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IMPORTANCE: Factors associated with mortality in coronavirus disease 2019 
patients on invasive mechanical ventilation are still not fully elucidated.

OBJECTIVES: To identify patient-level parameters, readily available at the bed-
side, associated with the risk of in-hospital mortality within 28 days from com-
mencement of invasive mechanical ventilation or coronavirus disease 2019.

DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort 
study by the global Coronavirus Disease 2019 Critical Care Consortium. Patients 
with laboratory-confirmed coronavirus disease 2019 requiring invasive mechan-
ical ventilation from February 2, 2020, to May 15, 2021.

MAIN OUTCOMES AND MEASURES: Patient characteristics and clinical data 
were assessed upon ICU admission, the commencement of invasive mechanical ven-
tilation and for 28 days thereafter. We primarily aimed to identify time-independent 
and time-dependent risk factors for 28-day invasive mechanical ventilation mortality.

RESULTS: One-thousand five-hundred eighty-seven patients were included in 
the survival analysis; 588 patients died in hospital within 28 days of commencing 
invasive mechanical ventilation (37%). Cox-regression analysis identified associa-
tions between the hazard of 28-day invasive mechanical ventilation mortality with 
age (hazard ratio, 1.26 per 10-yr increase in age; 95% CI, 1.16–1.37; p < 0.001), 
positive end-expiratory pressure upon commencement of invasive mechanical ven-
tilation (hazard ratio, 0.81 per 5 cm H2O increase; 95% CI, 0.67–0.97; p = 0.02). 
Time-dependent parameters associated with 28-day invasive mechanical venti-
lation mortality were serum creatinine (hazard ratio, 1.28 per doubling; 95% CI, 
1.15–1.41; p < 0.001), lactate (hazard ratio, 1.22 per doubling; 95% CI, 1.11–1.34;  
p < 0.001), Paco2 (hazard ratio, 1.63 per doubling; 95% CI, 1.19–2.25; p < 0.001), 
pH (hazard ratio, 0.89 per 0.1 increase; 95% CI, 0.8–14; p = 0.041), Pao2/Fio2 
(hazard ratio, 0.58 per doubling; 95% CI, 0.52–0.66; p < 0.001), and mean arterial 
pressure (hazard ratio, 0.92 per 10 mm Hg increase; 95% CI, 0.88–0.97; p = 0.003).

CONCLUSIONS AND RELEVANCE: This international study suggests that in 
patients with coronavirus disease 2019 on invasive mechanical ventilation, older 
age and clinically relevant variables monitored at baseline or sequentially during the 
course of invasive mechanical ventilation are associated with 28-day invasive me-
chanical ventilation mortality hazard. Further investigation is warranted to validate 
any causative roles these parameters might play in influencing clinical outcomes.

KEY WORDS: coronavirus disease 2019; intensive care unit; mechanical 
ventilation; severe acute respiratory syndrome coronavirus 2

In 2020, outbreaks due to severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) were reported globally (1). Among patients with coronavirus 
disease 2019 (COVID-19), a subset developed critical illness, and up to 17% 
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of those severe patients received invasive mechanical ventilation (IMV) (2–5). 
Reports on critically ill patients have been limited to small cohorts (3, 6), single-
center reports (7), mixed populations with and without need of IMV (2, 4, 8, 9),  
and single-country studies (10). Early studies have revealed substantial varia-
bility in mortality rates—ranging from 30% (2) to 80% (2, 4, 8).

Studies (2, 10–12) that have focused on COVID-19 patients on IMV have 
identified a variety of demographic and clinical characteristics associated with 
mortality. In COVID-19 patients requiring IMV, routinely measured param-
eters could be of significant prognostic value. The pattern and value of their 
clinical trajectory have been investigated in a recent study (9) in a mixed Italian 
population, but corroboration of these findings in international populations 
on IMV remains to be elucidated. Ignoring changes in biochemical parame-
ters over time when estimating associations with hospital outcomes is likely 
to produce biased estimates (13). For clinicians wanting to use model outputs 
for prognostic purposes, the presence of such biases will have implications for 
identifying patients at high risk of mortality.

In early January 2020, the COVID-19 Critical Care Consortium  (COVID-19–
CCC) was founded to provide a global perspective on the management of crit-
ically ill COVID-19 patients and resulting outcomes to overcome many of the 
limitations of single-center and single-nation studies. In this analysis, we pre-
sent an inclusive characterization of mechanically ventilated patients to identify 
baseline and longitudinal factors associated with in-hospital mortality assessed 
over the first 28 days after the commencement of IMV (28-d IMV mortality).

MATERIALS AND METHODS

Study Design and Setting

We analyzed COVID-19–CCC study (14) dataset (Trial registration: 
ACTRN12620000421932), which is a prospective international, multicenter, 
observational study in 377 hospitals spanning 53 countries. The study protocol 
was approved by the Alfred Hospital Ethics Committee, Melbourne, Australia 
(Project: 62066, Local reference: 108/20). Participating hospitals obtained local 
ethics committee approval, and a waiver of informed consent was granted in 
all cases. De-identified patient data were collected and stored via the Research 
Electronic Data Capture electronic data capture tool, hosted at the University of 
Oxford, Oxford, United Kingdom; University College Dublin, Dublin, Ireland; 
and Monash University, Melbourne, Victoria, Australia.

Participants

Patients admitted to a COVID-19–CCC ICUs, from February 2, 2021, to May 
15, 2021, with laboratory-confirmed (real-time polymerase chain reaction) 
diagnosis of SARS-CoV-2 infection and requiring IMV for any cause were 
enrolled. Patients under the age of 15 years and those admitted to the ICU for 
reasons not related to an acute SARS-CoV-2 infection were excluded. Given 
our interest in examining associations between routinely tested parameters 
while in the ICU, we further identified the subset of patients with available lon-
gitudinal data over the course of ICU admission.
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Variables, Data Sources, Measurements,  
and Definitions

After enrollment, data on demographics, comorbidi-
ties, clinical symptoms, and laboratory results were col-
lected by clinical/research staff in all participating ICUs 
and recorded in an electronic case report form (14, 15). 
Details of respiratory and hemodynamic support, phys-
iologic variables, and laboratory results were collected 
daily up to 28 days from commencement of IMV. When 
multiple results for the same test were available for a 
single given day, the worst daily value was recorded 
preferentially. The duration of IMV and ICU stay also 
were recorded. In this article, analysis of daily data was 
restricted to the first 28 days following the initiation of 
IMV. Copies of case report forms detailing all variables 
can be found with the published study protocol (14).

Primary Outcome

The primary outcome was 28-day IMV mortality. We 
hypothesized that time-independent factors and tem-
poral trends of continuous parameters, frequently 
assessed in patients on IMV, could influence the ex-
pected risk of 28-day IMV mortality. Given that some 
patients did not have final disposition at the time of data-
base lock, those who were discharged alive from the hos-
pital within 28 days were censored on the date of hospital 
discharge; patients transferred within 28 days to another 
healthcare facility were censored on the date of transfer; 
patients whose outcome was not finalized on day 28 were 
censored at the last known date of daily data collection.

Secondary Outcomes

Variable associations with the hazard of being discharged 
alive from the hospital were modeled to account for the 
competing risk. We also describe the overall duration of 
IMV, hospital stay duration, tracheostomy use, and the 
occurrence of complications on IMV.

Statistical Analysis

Further details about the statistical analysis are reported 
in the Supplementary Digital Content (http://links.lww.
com/CCX/A834). In addition, variable transformations are 
detailed in Table 1 (Supplementary Digital Content, http://
links.lww.com/CCX/A852). Descriptive statistics included 
patient demographics, comorbidities, admission signs and 
symptoms, clinical signs at IMV commencement, and ICU 

management. Continuous variables were summarized as 
medians with interquartile ranges. Categorical variables 
were summarized as frequencies with percentages. Data 
completeness per variable was also reported in all tables.

For the subset of patients with daily (longitudinal) 
data collected on clinical parameters, we first examined 
temporal trends over the first 28 days from commence-
ment of IMV. Data were presented visually as unad-
justed means and 95% CIs and not clustered per survival 
or discharge outcome. The resulting outputs allowed us 
to assess changes in clinical parameters during IMV, 
to inform the formulation of time-to-event models for 
estimating the hazards of mortality and discharge.

We performed time-to-event analysis to examine 
associations between critical variables measured on 
or before the commencement of IMV (time-indepen-
dent) and variables assessed over time on the hazards 
of mortality and discharge (28-d IMV discharge) up to 
28 days from commencement of IMV (13). Mortality 
and discharge were considered as competing events. 
Associations with each outcome were estimated 
using cause-specific Cox proportional hazard models. 
Models included fixed effects for age, sex, body mass 
index, cardiac arrest before IMV, and comorbidities re-
ported at hospital admission (diabetes, hypertension, 
chronic cardiac disease, chronic pulmonary disease), 
selected based on previous evidence approximately  
(2, 7, 10). For each patient, we included daily observa-
tions where all time-dependent variables were observed 
on the same day. Tidal volume and positive end-expira-
tory pressure (PEEP), measured upon commencement 
of IMV, were also included. Unlike other daily param-
eters, we considered baseline values for tidal volume 
and PEEP, as these variables are specific to time spent 
on IMV. Log-2 transformations were applied to serum 
creatinine, lactate, Paco2, and Pao2:Fio2 to resolve 
right-skewness in variables prior to inclusion as inde-
pendent variables in each Cox model; a 1 unit increase 
in transformed variables therefore corresponded to a 
doubling in value on the original scale. The remaining 
variables were mean centered and appropriate scaled 
to improve interpretation of the estimated effect (Table 
1, Supplementary Digital Content, http://links.lww.
com/CCX/A852). The baseline hazard function was 
modeled on the calendar time scale stratified by geo-
graphic region (Africa, Asia, Australia/New Zealand, 
Europe, Latin America and the Caribbean, Northern 
America) to account for nonproportional effects (16).

http://links.lww.com/CCX/A834
http://links.lww.com/CCX/A834
http://links.lww.com/CCX/A852
http://links.lww.com/CCX/A852
http://links.lww.com/CCX/A852
http://links.lww.com/CCX/A852
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Missing data on time-independent covariates, ex-
cluding cardiac arrest before IMV, were assumed to be 
missing at random. Values were imputed with Multiple 
Imputation using Chained Equations (MICE) (16). 
MICE is an iterative algorithm that applies a series of 
linked regression models to impute missing values for 
each covariate, conditional on values for remaining 
variables. Models are fitted to multiple independent 
runs of the MICE algorithm; results across multiple runs 
are combined to produce a result. For time-dependent 
variables, follow-up intervals were constructed using 
all available daily observations per patient in line with 
a model specification for time-to-event analyses (13).  
Final model results were pooled following ten inde-
pendent rounds of MICE and model fitting.

All analyses were conducted using R Version 4.0.1 
or higher (The R Foundation for Statistical Computing, 
Institute for Statistics and Mathematics, Vienna, Austria).

RESULTS

A total of 3,244 COVID-19 patients, enrolled at 132 
collaborating sites across 32 countries, were screened 
for final analysis (Fig. 1). Among those patients, 2,234 

(69%) received IMV and were included in the analysis, 
while 1,010 patients (31%) who never received IMV 
were excluded.

Patient Characteristics

In the studied cohort, the median age (IQR) was 59 years 
(49–68 yr), and patients were predominantly White 
(41%) and from Northern America (30%) (Table 2,  
Supplementary Digital Content, http://links.lww.
com/CCX/A852). Hypertension, obesity, smoking, 
and diabetes were the most common comorbidities. 
The median time from onset of symptom to ICU ad-
mission was 8 days (IQR, 5–12 d), as was time from 
symptom onset to commencement of IMV (median, 
8 d; IQR, 5–12 d). IMV was initiated upon ICU ad-
mission for 63% of the patients. At the time of IMV 
commencement (Table  1), median (IQR) creati-
nine and lactate were 1.0 mg/dL (0.7–1.4 mg/dL)  
and 1.4 mmol/L (1.0–2.1 mmol/L), respectively. 
Patients were severely hypoxemic, and their median 
(IQR) Pao2/Fio2 was 107 mm Hg (74–148 mm Hg), 
pH was 7.35 (7.28–7.42), and Paco2 was 43.8 mm Hg 
(36.0–53.2 mm Hg). Patients presented with respiratory 

Figure 1. Flow of patient enrollment by the censor date of December 29, 2020. COVID-19 = coronavirus disease 2019,  
MV = mechanical ventilation, SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

http://links.lww.com/CCX/A852
http://links.lww.com/CCX/A852
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system compliance of 33 mL/cm H2O (17–33) and 
were ventilated using PEEP of 12 cm H2O (2, 9–12). 
Vasopressors were required in 54% of the patients. 
Common treatment strategies over the first 28 days 
included antibiotics (95%), neuromuscular blocking 
agents (74%), prone positioning (51%), corticosteroids 
(52%), and antivirals (49%) (Table 2).

In 1,587 patients with complete daily assessment, 588 
patients died in hospital within 28 days of commenc-
ing IMV (37%), 28 patients (1.8%) were transferred to 
another hospital. At the study end date, outcomes of 98 
patients (6.2%) who were censored at their last known 
follow-up date were unknown, based on daily data col-
lection. Among patients who died, the median time to 

TABLE 1. 
Clinical Characteristics Upon Commencement of Invasive Mechanical Ventilation

Characteristic
All Mechanically Ventilated 

Patients (n = 2,234)
Patients Included in Survival 

Analysis (n = 1,587)

Clinical signs and laboratory findings within 24 hr from commencement of IMV

 WBC count, 103/µL: n; median (IQR) 1,504; 10.7 (7.2–14.9) 1,167; 10.6 (7.1–14.7)

 Lymphocyte count, 103/µL: n; median (IQR) 1,114; 0.8 (0.5–1.2) 890; 0.8 (0.5–1.1)

 Neutrophils: lymphocyte ratio: n; median (IQR) 1,037; 11 (6–19) 832; 11 (6–19)

 Temperature, °C: n; median (IQR) 1,096; 37 (36–38) 855; 37 (36–38)

 Creatinine, mg/dL: n; median (IQR) 1,536; 1.0 (0.7–1.4) 1,205; 0.9 (0.7–1.4)

 C-reactive protein level, mg/dL: n; median (IQR) 967; 86 (16–178) 819; 90 (18–183)

 d-dimer, µg/mL: n; median (IQR) 623; 1.6 (0.8–3.9) 495; 1.4 (0.7–3.7)

 Lactate, mmol/L: n; median (IQR) 1,286; 1.4 (1.0–2.1) 1,143; 1.4 (1.0–2.1)

 Ferritin; ng/mL: n; median (IQR) 492; 2.7 (1.4–4.5) 398; 2.7 (1.5–5.4)

 Interleukin-6; ng/L: n; median (IQR) 167; 95 (32–295) 156; 103 (33–313)

Gas exchange and level of support within 24 hr from commencement of IMV

 pH: n; median (IQR) 1,593; 7.35 (7.28–7.42) 1,260; 7.35 (7.28–7.43)

 Fio2, mm Hg: n; median (IQR) 1,581; 0.80 (0.60–1.00) 1,254; 0.80 (0.60–1.00)

 Pao2/Fio2, mm Hg: n; median (IQR) 1,460; 107.07 (74.00–158.05) 1,211; 108.33 (74.85–157.50)

 Paco2, mm Hg: n; median (IQR) 1,577; 43.80 (36.00–53.20) 1,245; 44.20 (36.90–53.60)

 Static respiratory system compliance,  
 mL/cm H2O: n; median (IQR)

663; 33 (25–42) 571; 33 (26–42)

 Plateau pressure, cm H2O: n; median (IQR) 875; 25 (21–28) 755; 25 (21–28)

 Driving pressure, cm H2O: n; median (IQR) 872; 12 (10–15) 753; 12 (10–15)

 Respiratory rate, breaths/min: n; median (IQR) 1,364; 22 (19–28) 1,023; 22 (18–27)

 Positive end-expiratory pressure level, cm H2O: n;  
 median (IQR)

1,392; 12 (10–14) 1,066; 12 (10–14)

 Minute ventilation, L/min: n; median (IQR) 1,033; 9 (8–11) 797; 9 (8–11)

 Ventilatory ratio: n; median (IQR) 836; 0.73 (0.59–0.92) 675; 0.74 (0.60–0.93)

 Heart rate, beats/min: n; median (IQR) 1,384; 98 (78–116) 1,019; 96 (76–114)

 Mean arterial pressure, mm Hg: n; median (IQR) 1,679; 75 (64–89) 1,279; 74 (64–88)

 Vasopressor/inotropic support, n (%) 939/1,726 (54) 732/1,300 (56)

 Tracheostomy, n (%) 27/1,745 (2) 22/1,316 (2)

IMV = invasive mechanical ventilation, IQR = interquartile range.
Twenty-eight-day ventilator-free day (VFD) was calculated as following: VFDs = 0 if subject dies within 28 d of mechanical ventilation; 
VFDs = of –x if successfully liberated from ventilation × days after initiation; VFDs = 0 if the subject is mechanically ventilated for > 28 d.
Static respiratory system compliance was calculated as: tidal volume (mL)/(static airway plateau pressure–positive end-expiratory 
pressure [cm H2O]).
Percentages are calculated for nonmissing data.
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death was 14 days (IQR, 6–23 d) from ICU admission. 
For patients with a reported cause of death (n = 675),  
respiratory failure was the most common (n = 268; 
40%), while other causes included multiple organ failure  
(n = 233; 35%), septic shock (n = 65; 10%), cardiac 
failure (n = 37; 5%), cerebrovascular accident (n = 19; 
3%), hemorrhagic shock (n = 6; 1%), or other causes  
(n = 47; 7%).

Dynamics of Daily Clinical Parameters

Daily averages for clinical variables, including arte-
rial blood gases, are depicted in Figure 2. There was 
a clear improvement in the dynamics of Pao2/Fio2 

(from 131.1 ± 2.5 mm Hg upon start IMV to 173.9 ± 
9.1 mm Hg at 28 d), pH (from 7.34 ± 0.003 to 7.40 ± 
0.01), serum creatinine (from 1.38 ± 0.04 to 1.17 ± 
0.01 mg/dL), and lactate (from 2.03 ± 0.07 to 1.18 ± 
0.09 mmol/L). Differently, trajectories of Paco2 and 
mean arterial pressure (MAP) were more convoluted, 
with early worsening during the first days of IMV 
and delayed improvement. Figure 1 (Supplementary 
Digital Content, http://links.lww.com/CCX/A852) 
shows ventilatory modes throughout the study period. 
Controlled modes were predominantly used during the 
first 2 weeks of IMV. Stratification of clinical variables 
and ventilatory settings for patients with known final 
outcome within the first 28 days of IMV are reported 

TABLE 2. 
ICU Clinical Management Within the First 28 Days of ICU Admission

Characteristic

All Mechanically 
Ventilated Patients  

(n = 2,234)

Patients Included  
in Survival Analysis  

(n = 1,587)

Antibiotics, n (%) 2,098/2,203 (95) 1,514/1,565 (97)

Any antiviral, n (%) 890/1,822 (49) 591/1,286 (46)

Remdesivir, n (%) 281/1,205 (23) 177/867 (20)

Corticosteroids, n (%) 816/1,573 (52) 596/1,138 (52)

Continuous renal replacement therapy, n (%) 329/2,148 (15) 231/1,545 (15)

Vasoactive drugs, n (%) 1,263/2,118 (60) 913/1,527 (60)

Cardiac assist devices, n (%) 111/2,141 (5) 91/1,532 (6)

Extracorporeal membrane oxygenation, n (%) 499/2,202 (23) 350/1,577 (22)

Prone positioning, n (%) 1,129/2,204 (51) 927/1,577 (59)

Use of inhaled nitric oxide, n (%) 251/2,203 (11) 198/1,576 (13)

Use of neuromuscular blockade, n (%) 1,627/2,198 (74) 1,275/1,575 (81)

Recruitment maneuvers, n (%) 541/2,042 (26) 483/1,472 (33)

Tracheostomy inserted, n (%) 366/2,166 (17) 304/1,576 (19)

28-d ventilator-free day, d: n; median (IQR) 2,082; 0 (0–13) 1,471; 0 (0–13)

Days from ICU admission to death: n; median (IQR) 1,076; 13 (5–23) 729; 14 (7–24)

Days from IMV commencement to death: n; median (IQR) 1,076; 12 (6–23) 729; 13 (7–24)

Duration of ICU stay (died), d: n; median (IQR) 1,076; 13 (5–23) 729; 14 (6–23)

Duration of ICU stay (discharged), d: n; median (IQR) 1,001; 20 (12–34) 732; 20 (13–34)

Days from hospital admission to IMV commencement: n; median (IQR) 2,231; 0 (0–3) 1,585; 0 (0–3)

Days from ICU admission to IMV commencement: n; median (IQR) 2,234; 0 (0–0) 1,587; 0 (0–0)

Days from first reported symptom to IMV commencement: n; median (IQR) 2,169; 8 (5–12) 1,545; 8 (5–12)

Commenced IMV on ICU admission, n (%) 1,413/2,234 (63) 1,039/1,587 (65)

IMV = invasive mechanical ventilation, IQR = interquartile range.
Twenty-eight-day ventilator-free day (VFD) was calculated as following: VFDs = 0 if subject dies within 28 d of mechanical ventilation; 
VFDs = of –x if successfully liberated from ventilation × days after initiation; VFDs = 0 if the subject is mechanically ventilated for > 28 d.
Percentages are calculated for nonmissing data.

http://links.lww.com/CCX/A852
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Figure 2. Dynamics of time-dependent parameters included in survival analysis. Average daily parameters collected during the first 28 d 
following commencement of mechanical ventilation. Data are reported as unadjusted means and 95% CIs.

separately in Figures 2 and 3 (Supplementary Digital 
Content, http://links.lww.com/CCX/A852). There was 
an apparent discrepancy between survivors and non-
survivors in the applied Fio2, while tidal volume and 
PEEP were similar throughout the assessment period.

Primary Outcome

Time-to-event analysis (Fig. 3A) identified age 
(hazard ratio [HR], 1.26 per 10-yr increase in age; 
95% CI, 1.16–1.37; p < 0.001) and PEEP upon com-
mencement of IMV (HR, 0.81 per 5 cm H2O increase; 
95% CI, 0.67–0.97; p = 0.02) as statistically significant 
associations with of the hazard of 28-day IMV mor-
tality. Among time-dependent variables, an increase 
in serum creatinine (HR, 1.28 per doubling; 95%  
CI, 1.15–1.41; p < 0.001), lactate (HR, 1.22 per doubling; 
95% CI, 1.11–1.34; p < 0.001), and Paco2 (HR, 1.63 per 
doubling; 95% CI, 1.19–2.25; p = 0.003) increased the 
hazards of 28-day IMV mortality. Conversely, an in-
crease in pH (HR, 0.89 per 0.1 increase; 95% CI, 0.78–
1; p = 0.041), Pao2/Fio2 (HR, 0.58 per doubling; 95%  
CI, 0.52–0.66; p < 0.001), and MAP (HR, 0.92 per 10 mm 
Hg increase; 95% CI, 0.88–0.97; p < 0.003) decreased 
the hazards of 28-day IMV mortality. Figure 4A  
depicts variability in the stratified baseline survival 
function for the death, by geographic regions.

Secondary Outcomes

Estimated HRs for the variables as mentioned above and 
the hazard of discharge are reported in Figure 3B. Results 
indicated that older age (HR, 0.87 per 10-yr increase in 
age; 95% CI, 0.79–0.96; p = 0.004), increased creatinine 
(HR, 0.84 per doubling; 95% CI, 0.73–0.96; p = 0.01), 
and Paco2 (HR, 0.6 per doubling; 95% CI, 0.38–0.94;  
p = 0.027) decreased the hazards of 28-day IMV dis-
charge, while higher Pao2/Fio2 (HR, 1.69 per doubling; 
95% CI, 1.45–1.96; p < 0.001) increased the hazard. 
Similar to mortality, stratification of the baseline survival 
function for the hazards of discharge revealed nonpro-
portional effects between geographic regions (Fig. 4B).

Tracheostomy was carried out in 304 of 1,576 patients 
(19%) included in the survival analysis (Table 2). During 
hospitalization, the most common complications in the 
mechanically ventilated population were cardiac ar-
rhythmia (23%), pleural effusion (19%), and cardiac 
arrest (21%) (Table 3, Supplementary Digital Content, 
http://links.lww.com/CCX/A852). The median dura-
tion of IMV was 14 days (IQR, 7–25 d). Among patients 
in whom final disposition was available within 28 days 
of IMV, the median time from ICU to death was 14 days 
(IQR, 7–22 d). Among patients known to be discharged 
alive from the hospital, the median duration of ICU ad-
mission was 20 days (IQR, 13–34 d).
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DISCUSSION

The present international multicenter cohort study 
from six continents constitutes the most extensive 
epidemiological investigation of IMV patients with 
COVID-19. The study enabled delineation of the clin-
ical course during the first 28 days, corroborating age 
and accounting for longitudinal changes in pH, Pao2/
Fio2, MAP, Paco2, lactate, and creatinine when assess-
ing associations with mortality.

Reported mortality rates in mechanical ventilated 
COVID-19 patients have varied (2, 4, 8, 12, 34). Those 
findings have been potentially biased by highly variable 
censor dates to define death, and substantial percent-
ages of patients still requiring ICU care at the chosen 
censor date (2, 4, 6–8, 17, 24, 35–37). In our study, 
among 1,587 ventilated patients, we reported an overall 
28-day IMV mortality of 37%, similar to rates from the 

Netherlands (10) and Spain (7) and lower than figures 
from United Kingdom (18). Given the observational 
nature of our study, extrapolations on the mortality fig-
ures can only be speculative. Nevertheless, our findings 
should be interpreted in the context of the enrollment 
period since early dismal survival might have been 
counterbalanced by lower mortality rates later in the 
pandemic. In addition, in comparison with previous 
single-country observational studies (19, 20), corti-
costeroids were used in fewer patients, due to either 
differences in practice among geographical regions or 
inclusion of data acquired early in the pandemic.

In line with previous reports (8, 10, 12, 21, 22) that 
found older populations at the highest risk of mor-
tality, age shared a positive association with the hazard 
of 28-day IMV mortality. Of note, we report a slightly 
younger population than previous investigations 
(7, 21, 23, 24), possibly because, in 2020, IMV was 

Figure 3. Association of clinical variables with major outcomes. Cause-specific Cox proportional hazards modeling to estimate the 
hazards of death (A) or discharge (B), up to 28 d following commencement of mechanical ventilation (MV). The model considered 
time-independent variables: age, sex, body mass index (BMI), diabetes, hypertension, chronic cardiac disease, chronic pulmonary 
disease, cardiac arrest before invasive MV, highest positive end-expiratory pressure (PEEP) within 24 hr from commencing of MV (mean 
centered at 10 cm H2O and scaled by 5 cm H2O), and tidal volume upon commencement of MV. The model also included time-dependent 
covariates: serum creatinine, serum lactate, pH, Paco2, Pao2/Fio2, and mean arterial pressure. Covariate effects are presented as hazard 
ratios (HRs) and 95% CI. 
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primarily reserved for younger 
patients in some of the geo-
graphical regions comprising 
our network. Irrespectively, it 
is still not fully elucidated why 
COVID-19 is more lethal in 
older adults, and several theories 
that detail potential risks asso-
ciated with age-related changes 
to the immune cells, inflam-
masome activity, epigenome, 
and characteristic comor-
bidities have emerged (25).  
Among the other time-inde-
pendent factors, only baseline 
PEEP was found to reduce mor-
tality hazards in our analyses, 
in contrast with previous evi-
dence associating higher PEEP 
with mortality (21). These find-
ings emphasize the challenges 
in setting the optimal PEEP in 
COVID-19 patients (26), par-
ticularly in light of early contro-
versial reports on heterogeneous 
static respiratory system com-
pliance in infected patients (27).  
Nevertheless, potential dis-
similarities in ventilatory 
management across different 
geographical regions should be 
considered to cautiously infer 
from these results.

We found that several clin-
ical variables increased the risk 
of 28-day IMV mortality. To 
the best of our knowledge, our 
report is the first that applied 
Cox proportional hazards 
modeling of 28-day IMV mor-
tality to assess the impact of 
time-dependent clinical vari-
ables, considering the com-
peting risk of ICU discharge. 
Indeed, previous investigations 
(7, 8, 10, 18, 21, 28) focused 
on risk factors for mortality 
appraised at a fixed time point, 

Figure 4. Geographical differences of major outcomes. Baseline survival curves by region 
(Africa, Asia, Australia/New Zealand, Europe, Latin America, and the Caribbean, Northern 
America) for in-hospital mortality (A) and discharge alive from the hospital (B). Baseline 
stratification in cause-specific Cox models accounted for nonproportional effects attributable 
to geographic region. Baseline hazards were modeling on the calendar time scale, with 
independent right-censoring applied to outcomes censored up to 28 d from commencement 
of mechanical ventilation.
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limiting inferences on variables that dynam-
ically change during IMV. Zanella et al (9)  
specifically focused on temporal trends of clinical 
parameters and mortality, but in a mixed Italian pop-
ulation of COVID-19 patients, requiring in 21% of the 
cases noninvasive ventilation. Conversely, our investi-
gation focused on patients on IMV and by incorpo-
rating geographic region stratification in modeling, 
we found substantial differences in survival across 
the globe, in line with the most recent reports from 
low-middle-income countries (29). As expected, the 
severity of hypoxemia during IMV was strongly associ-
ated with both mortality and delayed discharge. In this 
cohort, patients presented a considerable improvement 
in Pao2/Fio2 during the first 24 hours of IMV, simi-
larly to previous evidence (7, 9), and potentially related 
to the prompt pronation, neuromuscular blocking 
agents, and high PEEP after commencement of IMV. 
However, the data also emphasize potential long-term 
respiratory dysfunction since moderate hypoxemia 
persisted throughout the assessment period. The study 
also identified the association of Paco2 with the hazard 
of death, which could be related to higher lung disease 
severity, resulting dead space, and variations in ven-
tilatory strategies. Furthermore, an increase in Paco2 
during the initial days of IMV was evident in this co-
hort, possibly related to the initial hypercatabolic state, 
inadequate ventilatory management, micro or macro-
vascular pulmonary thrombosis (30–32), or simply to 
respiratory fatigue, given that on average, patients were 
intubated 8 days from symptom onset. Previous stud-
ies (8–10, 18, 21) failed to corroborate serum lactate 
and MAP as risk factors for mortality in COVID-19  
patients on IMV. In a large critically ill population 
from the United Kingdom, lactate within 24 hours 
from ICU admission was an early predictor of mor-
tality (18). However, the evolution of such param-
eter in this population was unknown, and only 59% 
required IMV. Cytokine storm and septic shock in 
COVID-19 are linked with hemodynamic instability 
and lactic acidosis, and multiple organ failure in the 
most severe cases. Thus, our findings imply that trends 
in hemodynamic impairment could be valuable in risk 
stratification. However, heterogeneities in local man-
agement of vasopressors, which were administered in 
56% of our studied population, could have also played 
a role in mortality risk. In contrast with previous find-
ings (9, 10), temporal change in pH was associated 

with mortality risk. On average, pH normalization was 
achieved within 1 week. It is uncertain whether low pH 
was driven by refractory hypercapnia, metabolic dis-
turbance, or a mixed acid-base disorder. Importantly, 
interdependence of aforementioned variables should 
also be considered. Indeed, pH and Paco2 coupling may 
have been present during refractory hypercapnia, and 
similarly, pH and lactate correlation could have been 
the result of sustained acidemia during severe hypo-
tensive states or other metabolic disturbances. Finally, 
the association of serum creatinine with the hazards of 
death is important because most studied patients did 
not have chronic kidney disease before hospitalization. 
Further investigation of the multifactorial etiology of 
renal impairment in COVID-19 is urgently needed, as 
the angiotensin-converting enzyme 2 receptor is crit-
ical for SARS-CoV-2 cell entry and widely expressed in 
the kidneys (33, 38), but IMV and septic shock might 
have also contributed to kidney injury.

In efforts to inform the field as to characteristics 
of COVID-19 infection, early publications limited to 
small-patient-series or single-country experiences 
have appeared. These articles reported conflicting 
findings related to center-specific patient populations, 
resource availability differences, and patient manage-
ment strategy variations. The current study overcomes 
some of these limitations by providing a detailed global 
analysis of demographics and comorbidities associated 
with mortality and, for the first time, account for the 
dynamics of a clinically relevant subset of commonly 
tested variables associated with hazards of 28-day IMV. 
Further analyses of the COVID-19–CCC dataset are 
focusing on the impact of treatments on mortality, spe-
cifically in subpopulations admitted to ICUs after the 
early phase of the pandemic. Limitations of the current 
report include that our model should not be used for 
prediction at an individual level due to the lack of val-
idation in different and larger cohorts. Admission to 
ICU, indication for IMV were not standardized across 
countries and could have depended on local practices. 
In this cohort, several patients received IMV in 2020; 
thus, they may not reflect the current scenarios of ICU 
ventilatory management across the globe—to which 
subsequent reports can be compared. Further, many of 
the early pandemic centers were resource limited, which 
may have adversely impacted the noted outcomes. 
Approximately 50% of the patients received corticoste-
roids. Consequently, any extrapolation of our findings 



Observational Study

Critical Care Explorations www.ccejournal.org     11

to patients receiving corticosteroids must be performed 
with caution (39, 40). Given that the analyses selectively 
focused on a subset of variables, other unmeasured fac-
tors could have biased our inferences about mortality 
risks. In addition, the 28-day follow-up could have bi-
ased results toward early mortality. Irrespectively, we 
precisely aimed at identifying key associations affecting 
mortality during the period of IMV, which in COVID-19  
patients is approximately 10 days (10, 34, 41). Last, ap-
proximately 20% of the analyzed patients received ex-
tracorporeal membrane oxygenation, which could have 
interfered on the association between arterial blood gas 
analysis parameters and mortality risk.

CONCLUSIONS

This study represents the most extensive and compre-
hensive international cohort analyses of patient char-
acteristics associated with mortality in COVID-19  
patients requiring IMV. Age and commonly tested 
parameters in COVID-19 patients on IMV, including 
pH, blood gases, MAP, serum lactate, and creatinine, 
were associated with increased mortality hazard. These 
original findings offer new avenues for research efforts 
for the early identification of the patients most at risk 
and in need of altering clinical management strategies.
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